Update on COVID-19, influenza and RSV vaccines
Update on COVID-19, influenza and RSV vaccines

Moderator:

• Dr. Ali Damji, Division Head, Primary Care, Trillium Health Partners and Family Physician, Credit Valley Family Health Team, Mississauga, ON

Panelists:

• Dr. Zain Chagla, Hamilton, ON
• Dr. Elizabeth Muggah, Ottawa, ON

Host:

• Dr. Mekalai Kumanan, Cambridge, ON

The COVID-19 Community of Practice for Ontario Family Physicians is a one-credit-per-hour Group Learning program that has been certified for up to a total of 32 credits.
Land Acknowledgement

We acknowledge that the lands on which we are hosting this meeting include the traditional territories of many nations.

The OCFP and DFCM recognizes that the many injustices experienced by the Indigenous Peoples of what we now call Canada continue to affect their health and well-being. The OCFP and DFCM respects that Indigenous people have rich cultural and traditional practices that have been known to improve health outcomes.

I invite all of us to reflect on the territories you are calling in from as we commit ourselves to gaining knowledge; forging a new, culturally safe relationship; and contributing to reconciliation.
Wab Kinew becomes Canada’s 1st First Nations premier of a province
Changing the way we work

A community of practice for family physicians during COVID-19

At the conclusion of this series participants will be able to:

• Identify the current best practices for delivery of primary care within the context of COVID-19 and how to incorporate into practice.
• Describe point-of-care resources and tools available to guide decision making and plan of care.
• Connect with a community of family physicians to identify practical solutions for their primary care practice under current conditions.

Disclosure of Financial Support

This CPD program has received in-kind support from the Ontario College of Family Physicians and the Department of Family and Community Medicine, University of Toronto in the form of logistical and promotional support.

Mitigating Potential Bias

• The Scientific Planning Committee has full control over the choice of topics/speakers.
• Content has been developed according to the standards and expectations of the Mainpro+ certification program.
• The program content was reviewed by a three-member national/scientific planning committee.

Planning Committee: Dr. Tara Kiran (DFCM), Dr. Mekalai Kumanan (OCFP); Dr. Ali Damji (DFCM), Dr. Harry O’Halloran, Kimberly Moran (OCFP), Mina Viscardi-Johnson (OCFP), Julia Galbraith (OCFP), Pavethra Yogeswaran (OCFP), Marisa Schwartz (DFCM), Erin Plenert (DFCM)

Potential for conflict(s) of interest:
N/A

Previous webinars & related resources:
https://www.dfcm.utoronto.ca/covid-19-community-practice/past-sessions
Dr. Zain Chagla – Panelist
Twitter: @zchagla
Co-Medical Director Infection Control and Head of Infectious Diseases Service, Infectious Disease Physician, St. Joseph’s Healthcare Hamilton

Dr. Liz Muggah – Panelist
Twitter: @ElizabethMuggah
Senior Clinical Advisor, Primary Care, Population Health and Value-based Health Systems, Ontario Health

Dr. Mekalai Kumanan – Host
Twitter: @MKumananMD
President, Ontario College of Family Physicians
Family Physician, Two Rivers Family Health Team
Chief of Family Medicine, Cambridge, ON
Speaker Disclosure

- Faculty Name: **Dr. Zain Chagla**
- Relationships with financial sponsors:
 - Grants/Research Support: Roche, Pfizer, Merck
 - Bureau/Honoraria: Ontario College of Family Physicians
 - Advisory boards or speakers’ bureaus: Pfizer, Moderna, Novovax, GSK, AstraZeneca, Avir, Merck, Gilead, Takeda, Roche
 - Others: N/A

- Faculty Name: **Dr. Liz Muggah**
- Relationships with financial sponsors:
 - Grants/Research Support: N/A
 - Speakers Bureau/Honoraria: N/A
 - Others: Ontario Health
Speaker Disclosure

• Faculty Name: **Dr. Mekalai Kumanan**
• Relationships with financial sponsors:
 • Grants/Research Support: N/A
 • Speakers Bureau/Honoraria: Ontario College of Family Physicians
 • Others: Chief of Family Medicine, Cambridge Memorial Hospital

• Faculty Name: **Dr. Ali Damji**
• Relationships with financial sponsors:
 • Grants/Research Support: N/A
 • Speakers Bureau/Honoraria: Ontario College of Family Physicians
 • Others: N/A
How to Participate

• All questions should be asked using the Q&A function at the bottom of your screen.

• Press the thumbs up button to upvote another guest’s questions. Upvote a question if you want to ask a similar question or want to see a guest’s question go to the top and catch the panel’s attention.

• Please use the chat box for networking purposes only.
Dr. Mekalai Kumanan – Host
Twitter: @MKumananMD
President, Ontario College of Family Physicians
Family Physician, Two Rivers Family Health Team
Chief of Family Medicine, Cambridge, ON

Dr. Zain Chagla – Panelist
Twitter: @zchagla
Co-Medical Director Infection Control and Head of Infectious Diseases Service, Infectious Disease Physician, St. Joseph’s Healthcare Hamilton

Dr. Liz Muggah – Panelist
Twitter: @ElizabethMuggah
Senior Clinical Advisor, Primary Care, Population Health and Value-based Health Systems, Ontario Health
Objectives

• COVID Vaccine update
• RSV Vaccine – evidence and considerations
• Paxlovid
• Office Infection Control
COVID-19 vaccines
Fall 2023 Update

• Beginning in the fall of 2023 for those previously vaccinated against COVID-19, NACI recommends a
dose of the XBB.1.5-containing formulation of COVID-19 vaccine for individuals in the authorized age
group if it has been at least 6 months from the previous COVID-19 vaccine dose or known SARS-CoV-
2 infection (whichever is later).
• Immunization is particularly important for those at increased risk of COVID-19 infection or severe
disease, for example:
 • Adults 65 years of age or older;
 • Residents of long-term care homes and other congregate living settings;
 • Individuals with underlying medical conditions that place them at higher risk of severe COVID-19;
 • Individuals who are pregnant;
 • Individuals in or from First Nations, Métis and Inuit communities;
 • Members of racialized and other equity-deserving communities;
 • People who provide essential community services
Figure 2. Analysis of Neutralizing Antibody Titers Against Ancestral SARS-CoV-2 (D614G) and BA.4/BA.5, XBB.1.5, XBB.1.16, XBB.2.3.2, EG.5.1, FL.1.5.1 and BA.2.86 Variants in a Randomly-selected Subset of Participants Who Received Monovalent mRNA-1273.815

All Participants

No Prior Infection

Prior Infection

NAb Titer (ID50)

Pre | Post | Pre | Post

D614G | BA.4/BA.5 | XBB.1.5 | XBB.1.16 | XBB.2.3.2 | EG.5.1 | FL.1.5.1 | BA.2.86

NAb Titer (ID50)

Pre | Post | Pre | Post

D614G | BA.4/BA.5 | XBB.1.5 | XBB.1.16 | XBB.2.3.2 | EG.5.1 | FL.1.5.1 | BA.2.86

NAb Titer (ID50)

Pre | Post | Pre | Post

D614G | BA.4/BA.5 | XBB.1.5 | XBB.1.16 | XBB.2.3.2 | EG.5.1 | FL.1.5.1 | BA.2.86
Table 2. Effectiveness against severe COVID-19 of a second booster dose of the bivalent (original/BA.4–5) mRNA vaccine relative to a first booster dose of an mRNA vaccine received ≥120 days earlier, by time since prior infection, Italy, 12 September–11 December 2022 (n = 11,190,209)

<table>
<thead>
<tr>
<th>Time since prior infection</th>
<th>First booster dose since ≥120 days (reference)</th>
<th>Bivalent second booster dose (original/BA.4–5)</th>
<th>rVE</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n events</td>
<td>Rate per 100,000 PD</td>
<td>n events</td>
<td>Rate per 100,000 PD</td>
</tr>
<tr>
<td>Primary analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No prior infection</td>
<td>18,594</td>
<td>2.60</td>
<td>413</td>
<td>1.54</td>
</tr>
<tr>
<td>≥40 weeks</td>
<td>433</td>
<td>1.93</td>
<td>17</td>
<td>0.93</td>
</tr>
<tr>
<td>27–39 weeks</td>
<td>494</td>
<td>1.37</td>
<td>26</td>
<td>0.76</td>
</tr>
<tr>
<td>17–26 weeks</td>
<td>507</td>
<td>0.52</td>
<td>18</td>
<td>0.73</td>
</tr>
<tr>
<td>Sensitivity analysis⁹</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No prior infection</td>
<td>13,879</td>
<td>1.94</td>
<td>308</td>
<td>1.15</td>
</tr>
<tr>
<td>≥40 weeks</td>
<td>322</td>
<td>1.43</td>
<td>13</td>
<td>0.71</td>
</tr>
<tr>
<td>27–39 weeks</td>
<td>353</td>
<td>0.98</td>
<td>17</td>
<td>0.50</td>
</tr>
<tr>
<td>17–26 weeks</td>
<td>366</td>
<td>0.38</td>
<td>14</td>
<td>0.57</td>
</tr>
</tbody>
</table>

CI: confidence interval; COVID-19: coronavirus disease; PD: person days; rVE: relative vaccine effectiveness.

⁹ Sensitivity analysis based on a more specific definition of severe COVID-19, including death and only admission to a hospital unit usually used for COVID-19 patients (i.e. intensive care unit, semi-intensive care unit, pulmonary unit, infectious and tropical diseases unit or general medicine unit). A total of 5,230 (25.5%) of the 20,502 severe cases identified in the primary analysis were classified as non-severe in the sensitivity analysis.
Pfizer vaccine

0.5 – 5 years
Primary – 3mcg IM at day 0, 21, > 8 weeks
Booster – 3mcg IM x 1

5-11 years
Primary + Booster – 10 mcg IM x 1

12+ years
Primary + Booster – 30mcg IM x 1

Note - Primary series for 12-29 year olds is still preferred for Pfizer vaccine

<table>
<thead>
<tr>
<th>Unvaccinated Individuals</th>
<th>Recommended Interval</th>
<th>Minimum Interval</th>
</tr>
</thead>
</table>
| **6 months – 4 years** | Moderna XBB.1.5 (25 mcg)
 - 2 dose schedule
 - 2nd dose, **56 days** after 1st dose | Moderna XBB.1.5 (25 mcg)
 - 2 dose schedule
 - 2nd dose, **28 days** after 1st dose |
| **5 – 11 years** | Moderna XBB.1.5 (25 mcg) - 1 dose schedule |
| **≥12 years** | Moderna XBB.1.5 (50 mcg) - 1 dose schedule |

<table>
<thead>
<tr>
<th>Previously Vaccinated Individuals</th>
<th>Recommended Interval</th>
<th>Minimum Interval</th>
</tr>
</thead>
</table>
| **6 months – 11 years** | Moderna XBB.1.5 (25 mcg)
 - **6 months (168 days)** after last dose or confirmed SARS-CoV-2 infection | Moderna XBB.1.5 (25 mcg)
 - **3 months (84 days)** after last dose or confirmed SARS-CoV-2 infection |
| **12 years +** | Moderna XBB.1.5 (50 mcg)
 - **6 months (168 days)** after last dose or confirmed SARS-CoV-2 infection | Moderna XBB.1.5 (60 mcg)
 - **3 months (84 days)** after last dose or confirmed SARS-CoV-2 infection |
RSV Vaccine
• Data from Ontario show that older adults make up a disproportionate number of RSV-attributed deaths.

- **Share of RSV-attributed hospitalizations**
 - <5 years: 70%
 - 5–64 years: 8%
 - ≥65 years: 22%

- **Share of RSV deaths (30-day all-cause mortality)**
 - <5 years: 3%
 - 5–64 years: 12%
 - ≥65 years: 85%

 - ~1 in 1000 of those hospitalized died
 - ~1 in 9 of those hospitalized died
Economic burden of RSV in older adults

RSV in older adults causes a sizeable economic burden in Canada

- A study by Rafferty (2022) examining RSV-attributable costs for laboratory-confirmed cases in Alberta determined¹;

 $12,713 CAD cost per RSV case within the first 30 days following diagnosis across all age groups
 In 65-79 YOA: $17,507 CAD
 In >80 YOA: $13,746 CAD

 $40,028 CAD cost per RSV case at 365 days following diagnosis across all age groups
 In 65-79 YOA: $96,271 CAD
 In >80 YOA: $71,773 CAD

- Inpatient costs accounted for 70 and 64% of total costs at 30 and 365 days, respectively.

- Costs were estimated from the healthcare perspective and did not consider societal or personal costs associated with RSV infection.

- Therefore, presented cost estimates are likely an underestimate of the actual cost burden of an RSV case to the health system, given indirect costs are not considered.

• AREXVY combines a recombinant RSV-PreF3 antigen

ANTIGEN

RSV-F stabilized in the prefusion state (120 µg)

The RSV-F antigen target is highly conserved between RSV-A and RSV-B subtypes

ADJUVANT

AS01E adjuvant system: liposomes containing two immunostimulants that boost RSV-specific T-cell response

- Monophosphoryl lipid A (MPL)
- Saponin QS-21

Same adjuvant ingredients as the recombinant shingles vaccine Shingrix, with half the amount of MPL and QS-21

AS01E, Adjuvant System 01E (25 µg Quillaja saponaria Molina, fraction 21, 25 µg 3-O-desacyl-4’-monophosphoryl lipid A, combined in a liposomal formulation)

Respiratory Syncytial Virus Prefusion F Protein Vaccine in Older Adults

• AReSVi-006: AREXVY pivotal efficacy study spanning 3 RSV seasons

Phase 3, randomized, placebo-controlled, observer-blind, multi-country study

Primary endpoint:
Vaccine efficacy against RSV-LRTD after 1 RSV season

Confirmatory secondary endpoint:
Vaccine efficacy of a single dose against RSV-LRTD after 2 seasons and vaccine efficacy after annual revaccination

Older adults aged ≥60 years
N=24,966

RSV season 1
2021–2022

Initiated May 2021

Randomized 1:1

AREXVY
N=12,467

Placebo
N=12,499

RSV season 2
2022–2023

AREXVY
Annual doses

Re-randomized 1:1

Placebo
AREXVY single dose

RSV season 3
2023–2024

Estimated completion May 2024

Vaccine or placebo administration

• AReSVi-006 enrolled adults ≥60 years old, including those with chronic medical conditions

• Key inclusion criteria
 • Males and females
 • ≥60 years of age at first RSV vaccination
 • Living in the general community or a long-term care facility
 • Participants with chronic conditions such as diabetes, hypertension or cardiac disease (with or without specific treatment) must have been assessed as medically stable

• Key exclusion criteria
 • Any confirmed or suspected immunosuppressive or immunodeficient condition resulting from disease or immunosuppressive/cytotoxic therapy, based on medical history or physical examination (no laboratory testing required)
 • Serious or unstable chronic illness
 • Administration of long-acting immune-modifying drugs, immunoglobulins and/or any blood products or plasma
 • Chronic administration (>14 consecutive days) of immunosuppressants or other immune-modifying drugs within 90 days of the first study vaccination

• One dose of AREXVY is highly efficacious across a broad spectrum of RSV-associated disease

<table>
<thead>
<tr>
<th>RSV-confirmed:</th>
<th>AREXVY N=12,466</th>
<th>Placebo N=12,494</th>
<th>Vaccine efficacy (CI*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acute respiratory infection</td>
<td>27</td>
<td>95</td>
<td>71.7% (56.2, 82.3)</td>
</tr>
<tr>
<td>LRTD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower respiratory tract disease</td>
<td>7</td>
<td>40</td>
<td>82.6% (57.9, 94.1)</td>
</tr>
<tr>
<td>Severe LRTD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Severe lower respiratory tract disease</td>
<td>1</td>
<td>17</td>
<td>94.1% (62.4, 99.9)</td>
</tr>
</tbody>
</table>

PRIMARY ENDPOINT

Core content

ARI: Acute respiratory infection
LRTD: Lower respiratory tract disease
Severe LRTD: Severe lower respiratory tract disease

AREXVY is highly efficacious across a broad spectrum of RSV-associated disease. The vaccine efficacy for acute respiratory infection (ARI) was 71.7% (56.2, 82.3), for lower respiratory tract disease (LRTD), it was 82.6% (57.9, 94.1), and for severe lower respiratory tract disease (Severe LRTD), it was 94.1% (62.4, 99.9).

CI, confidence interval.

*95% CI for RSV ARI and RSV confirmed severe LRTD; 96.95% CI for RSV confirmed LRTD

AREXVY is highly efficacious in older adults at increased risk of severe RSV disease, including those with comorbidities.

<table>
<thead>
<tr>
<th>Number of events</th>
<th>Vaccine efficacy (95% CI) against RSV-LRTD</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥1 pre-existing comorbidity of interest</td>
<td>94.6% (65.9, 99.9)</td>
</tr>
<tr>
<td>AREXVY N=12,466</td>
<td>1</td>
</tr>
<tr>
<td>Placebo N=12,494</td>
<td>18</td>
</tr>
<tr>
<td>≥1 cardiorespiratory condition</td>
<td>92.1% (46.7, 99.8)</td>
</tr>
<tr>
<td>AREXVY N=12,466</td>
<td>1</td>
</tr>
<tr>
<td>Placebo N=12,494</td>
<td>12</td>
</tr>
<tr>
<td>≥1 endocrine metabolic condition</td>
<td>100% (74.0, 100)</td>
</tr>
<tr>
<td>AREXVY N=12,466</td>
<td>0</td>
</tr>
<tr>
<td>Placebo N=12,494</td>
<td>13</td>
</tr>
<tr>
<td>Pre-frail</td>
<td>92.9% (53.4, 99.8)</td>
</tr>
<tr>
<td>AREXVY N=12,466</td>
<td>1</td>
</tr>
<tr>
<td>Placebo N=12,494</td>
<td>14</td>
</tr>
<tr>
<td>70–79 years of age</td>
<td>93.8% (60.2, 99.9)</td>
</tr>
<tr>
<td>AREXVY N=12,466</td>
<td>1 / 4,487</td>
</tr>
<tr>
<td>Placebo N=12,494</td>
<td>16 / 4,487</td>
</tr>
</tbody>
</table>

Cl, confidence interval; LRTD, lower respiratory tract disease.
- AREXVY provides a similar level of protection against RSV-A and RSV-B

<table>
<thead>
<tr>
<th></th>
<th>AREXVY</th>
<th>Placebo</th>
<th>Vaccine efficacy (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N=12,466</td>
<td>N=12,494</td>
<td></td>
</tr>
<tr>
<td>RSV-A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>acute respiratory infection</td>
<td>9</td>
<td>32</td>
<td>71.9% (39.7, 88.2)</td>
</tr>
<tr>
<td>RSV-B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>acute respiratory infection</td>
<td>18</td>
<td>61</td>
<td>70.6% (49.6, 83.7)</td>
</tr>
<tr>
<td>RSV-A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lower respiratory tract disease</td>
<td>2</td>
<td>13</td>
<td>84.6% (32.1, 98.3)</td>
</tr>
<tr>
<td>RSV-B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lower respiratory tract disease</td>
<td>5</td>
<td>26</td>
<td>80.9% (49.4, 94.3)</td>
</tr>
</tbody>
</table>

Two thirds of RSV-LRTD cases were associated with RSV-B

ARI, acute respiratory infection; LRTD, lower respiratory tract disease.

• AREXVY produces durable vaccine efficacy against RSV-LRTD over 2 RSV seasons

Efficacy of 1 dose of AREXVY against RSV-associated disease among adults aged ≥60 years

<table>
<thead>
<tr>
<th>Efficacy evaluation period</th>
<th>RSV-associated LRTD</th>
<th>RSV-associated medically attended* LRTD (post-hoc analysis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Season 1</td>
<td>82.6% (57.9–94.1)</td>
<td>87.5% (58.9–97.6)</td>
</tr>
<tr>
<td>Combined seasons 1 and 2</td>
<td>74.5% (60.0–84.5)</td>
<td>77.5% (57.9–89.0)</td>
</tr>
</tbody>
</table>

No recommendation for a booster at this time

Future data will inform optimal timing of revaccination

- Efficacy up to 18 months after was vaccination was shown:
 - in the overall population
 - against both RSV-A and RSV-B subtypes
 - across all age groups
 - in participants with comorbidities
 - against severe LRTD

LRTD prompting any health care visit.

LRTD, lower respiratory tract disease.

COVID Treatments
Primary outcome analysis and subgroups

CI, confidence interval; DDI, drug-drug interaction; NNT, number needed to treat; OR, (weighted) odds ratio; OST, Ontario COVID-19 Science Advisory Table.

Table 4. Risk of hospitalization among outpatients with high-risk of progression to severe COVID-19 who received nirmatrelvir/ritonavir prescription compared to controls

<table>
<thead>
<tr>
<th>Before Propensity Score Matching</th>
<th>After Propensity Score Matching</th>
<th>Adjusted Poisson regression with robust error variance*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>RR CI 95% P-value</td>
</tr>
<tr>
<td>Group</td>
<td>Population</td>
<td>Hospitalizations</td>
</tr>
<tr>
<td>All (incomplete and complete primary vaccination)</td>
<td>N 242,337</td>
<td>N 8,293 N 3.42</td>
</tr>
<tr>
<td></td>
<td>Control 16,901</td>
<td>356 2.14</td>
</tr>
<tr>
<td></td>
<td>Treated 12,699</td>
<td>62 0.49</td>
</tr>
<tr>
<td>Incomplete primary vaccination*</td>
<td>N 18,123</td>
<td>N 1,054 N 5.82</td>
</tr>
<tr>
<td></td>
<td>Control 13,904</td>
<td>294 7.53</td>
</tr>
<tr>
<td></td>
<td>Treated 4,219</td>
<td>233 7.97</td>
</tr>
<tr>
<td>Complete primary vaccination (All)</td>
<td>N 224,214</td>
<td>N 7,239 N 3.23</td>
</tr>
<tr>
<td></td>
<td>Control 190,544</td>
<td>4,987 3.57</td>
</tr>
<tr>
<td></td>
<td>Treated 3,665</td>
<td>223 7.79</td>
</tr>
<tr>
<td>Last vaccine dose ≤ 6 months</td>
<td>N 84,670</td>
<td>N 2,252 N 2.66</td>
</tr>
<tr>
<td></td>
<td>Control 143,904</td>
<td>2,037 1.1</td>
</tr>
<tr>
<td></td>
<td>Treated 2,137</td>
<td>81 3.8</td>
</tr>
<tr>
<td>Last vaccine dose > 6 months</td>
<td>N 105,265</td>
<td>N 1,136 N 1.1</td>
</tr>
<tr>
<td></td>
<td>Control 1,436</td>
<td>56 3.9</td>
</tr>
<tr>
<td></td>
<td>Treated 1,231</td>
<td>1,231 40 3.3</td>
</tr>
<tr>
<td>Less than 70 years (All)</td>
<td>N 78,425</td>
<td>N 5011 N 1.2</td>
</tr>
<tr>
<td></td>
<td>Control 701</td>
<td>25 3.6</td>
</tr>
<tr>
<td></td>
<td>Treated 901</td>
<td>579 16 2.1</td>
</tr>
<tr>
<td>70 years and older (All)</td>
<td>N 40,524</td>
<td>N 5,202 N 12.8</td>
</tr>
<tr>
<td></td>
<td>Control 1,755</td>
<td>213 12.1</td>
</tr>
<tr>
<td></td>
<td>Treated 4,219</td>
<td>356 11.8</td>
</tr>
<tr>
<td>70 years and older (Last dose ≤ 6 months)</td>
<td>N 6,245</td>
<td>N 1,351 N 21.6</td>
</tr>
<tr>
<td></td>
<td>Control 337</td>
<td>46 13.7</td>
</tr>
<tr>
<td></td>
<td>Treated 1,351</td>
<td>1,351 21.6</td>
</tr>
<tr>
<td>70 years and older (Last dose > 6 months)</td>
<td>N 2,012</td>
<td>N 452 N 22.5</td>
</tr>
<tr>
<td></td>
<td>Control 524</td>
<td>63 12.0</td>
</tr>
<tr>
<td></td>
<td>Treated 1,502</td>
<td>334 22.2</td>
</tr>
<tr>
<td>Severely immunocompromised (All)</td>
<td>N 1,502</td>
<td>N 334 N 22.2</td>
</tr>
<tr>
<td></td>
<td>Control 375</td>
<td>44 11.7</td>
</tr>
<tr>
<td></td>
<td>Treated 1,351</td>
<td>1,351 22.2</td>
</tr>
<tr>
<td>Severely immunocompromised (Last dose ≤ 6 months)</td>
<td>N 510</td>
<td>N 118 N 23.1</td>
</tr>
<tr>
<td></td>
<td>Control 149</td>
<td>19 12.8</td>
</tr>
<tr>
<td></td>
<td>Treated 1,351</td>
<td>1,351 23.1</td>
</tr>
<tr>
<td>Severely immunocompromised (Last dose > 6 months)</td>
<td>N 149</td>
<td>N 19 N 12.8</td>
</tr>
</tbody>
</table>
IPAC in the office

Table 2: Routine Practices for Risk Periods

<table>
<thead>
<tr>
<th>Routine Practices for Respiratory Viruses</th>
<th>High Risk Period</th>
<th>Non-High Risk Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCW Masking for direct patient care</td>
<td>Recommend</td>
<td>Situational^</td>
</tr>
<tr>
<td>HCW Masking in inpatient clinical areas</td>
<td>Strongly consider^</td>
<td>Situational^</td>
</tr>
<tr>
<td>HCW Masking in outpatient clinical areas</td>
<td>Consider^</td>
<td>Situational**</td>
</tr>
<tr>
<td>HCW Masking in non-clinical areas (i.e., no patient care activities performed/delivered)</td>
<td>Consider^</td>
<td>Situational**</td>
</tr>
<tr>
<td>Eye protection when within 2 metres of an asymptomatic patient</td>
<td>As per Personal Risk Assessment (Routine Practices)</td>
<td>As per Personal Risk Assessment (Routine Practices)</td>
</tr>
<tr>
<td>Asymptomatic Patient masking^</td>
<td>Recommend when ambulatory. Consider when in bedspace while receiving care.</td>
<td>Situational***</td>
</tr>
<tr>
<td>Visitor/essential caregiver masking in clinical areas</td>
<td>Recommend^**</td>
<td>Situational**</td>
</tr>
</tbody>
</table>

Table 1: Framework for Transmission Risk Periods

<table>
<thead>
<tr>
<th>Indicator</th>
<th>High Risk Period</th>
<th>Non-High Risk Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Respiratory virus outbreaks in health care facilities</td>
<td>Frequent and ongoing</td>
<td>Infrequent or baseline</td>
</tr>
<tr>
<td>Hospitalizations and ICU admissions^</td>
<td>High and/or upward trajectory</td>
<td>Baseline and stable</td>
</tr>
<tr>
<td>Community transmission**</td>
<td>High and/or increasing</td>
<td>Low to moderate and stable</td>
</tr>
</tbody>
</table>

^Secondary to acute respiratory virus infection. May include local or provincial context depending on organization. Metrics to consider as a proxy for disease severity include hospitalized cases or daily number of hospitalizations per 100,000 community population.

**Metrics to consider as a proxy for community transmission include:
1. Community positivity rates
2. Staff metrics including staff positivity rates and/or absenteeism
3. Wastewater surveillance trends
Return to work

- Ideally isolate for 10 days, minimum 5
- If mission critical consider return to work early – 24 hours fever free, symptoms improving
 - Prioritize people closest to 5-10 day mark
- For people who are within contagious period – well fitted mask at all times with others, provide safe environments for unmasking (eating etc) in isolation
- Many not being tested for COVID – for ARI - 24 hours fever free, symptoms improving, reinforce mask guidance as above
Supporting Family Doctors
In Practice

Fall 2023
Clarifying CPSO Advice

• You told us that unnecessary and inappropriate burden was being placed onto family doctors and your practice.

• You asked for clarification on CPSO advice. We took action to seek clarification from the CPSO.

• Visit ‘Advice to the Profession: Continuity of Care’
Primary Care Networks & OCFP Leadership Academy

Primary Care Networks
• 12 OHTs will be supported to accelerate OHT progress and impact and Primary Care Networks (PCNs) will be a necessary building block in that process.

OCFP Leadership Academy
• Applications for the second cohort are now open!
• Virtual and in-person learning, running from February 2024 to December 2024.

Future OCFP Leadership Academy alumni will be well-equipped to lead Primary Care Networks.
Reminder: Respiratory Illness Resources

Resources available at:

StayHealthyOntario.ca

Respiratory Illness Season

As more people spend time indoors, we can expect to see a seasonal rise in COVID-19, RSV, flu and other common colds and viruses.

The OCFP is sharing tips to help you stay healthy and manage your illness if you do get sick.

Stay up-to-date with vaccines
If you get sick: Managing colds, RSV, flu and COVID-19
Take action to stay healthy this fall and winter
Information for those at a high risk of complications
Primary Care: Supports for the Fall/Winter Respiratory Season

Dr. Liz Muggah
Senior Clinical Advisor, Primary Care

6 October 2023
Snapshot

• Volume of primary care visits (OHIP) has recovered to pre-pandemic levels

• Anticipate further increase in demand through the fall

• Recognize and value primary care’s critical role in preventing and caring for febrile respiratory illness

• Ontario Health will be sending out an operational direction for the whole health system and separately a primary care memo with resources
Ontario Health resources and supports related to the primary care of respiratory illness
Access to Ontario Health Clinical Services – Health811

For non-urgent health inquiries and questions, including those regarding respiratory illnesses, Ontarians can access Health811:

• Available 24/7 by calling 811 (TTY: 1-866-797-0007)
• Live online chat at ontario.ca/health811 (French: ontario.ca/sante811)
• Translation for the phone service is available in over 200 languages

Services offered through Health811:

• 24/7 access to health advice from registered nurses
• Assistance locating health services, including virtual urgent care
• Online symptom assessment tool
• Advice from registered dietitians, lactation consultants, smoking cessation coaches
• Free FIT kits for colorectal cancer screening
Regional Virtual Urgent Care Programs

- Regional virtual urgent care programs, staffed by nurse practitioners, are available for individuals without a primary care clinicians or those unable to reach their clinician.

- Central Region (Adult and Pediatric) - Oak Valley Health
- Toronto Region (Adult) - Sunnybrook Health Sciences Centre/University Health Network
- Toronto Region (Pediatrics) – SickKids
- Toronto Region (Mental Health) - Centre for Addictions and Mental Health
- East Region (Adult and Pediatrics) - Durham Community Health Centre
- West Region (Adult) - St. Joseph’s Healthcare Hamilton
- West Region (Pediatrics) - London Health Science Centre
Access to PPE and Rapid Tests

• To help ensure a steady supply of PPE and rapid antigen tests to support your clinical needs:

 • Personal protective equipment (PPE) and essential supplies, including rapid antigen tests, continue to be accessible through the Provincial PPE Supply Portal (now managed by Supply Ontario)
 • New users can register for access to the portal
COVID-19 Treatment

• Ontario Health has released updated guidance for accessing antiviral treatments for COVID-19 in the community

• Paxlovid handout for patients available in 29 languages

• Information and referral process for remdesivir
 • Recommendations for Outpatient Use of Intravenous Remdesivir (Veklury) in Adults
 • Remdesivir infusion referral forms and procedures
Regional Support for Primary Care

<table>
<thead>
<tr>
<th>Region</th>
<th>Contact</th>
<th>Regional Primary Care Leads</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toronto</td>
<td>Rose Cook</td>
<td>Dr. Danielle Martin</td>
</tr>
<tr>
<td>East</td>
<td>Dr. David Zelt</td>
<td>Dr. Alison Eyre</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dr. Anna Chavlovski</td>
</tr>
<tr>
<td>West</td>
<td>Dr. Jennifer Everson</td>
<td>Dr. Paul Gill</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dr. Gordon Schacter</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dr. Sharon Bal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dr. Scott Elliott</td>
</tr>
<tr>
<td>Central</td>
<td>Dr. Mira Backo-Shannon</td>
<td>Dr. Sohal Goyal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dr. David Daien</td>
</tr>
<tr>
<td>North East and North West</td>
<td>Dr. Paul Preston</td>
<td>Dr. Stephen Cooper (North East)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dr. Lisa Habermehl (North West)</td>
</tr>
</tbody>
</table>
Wondering if you should get boosted this Fall?

What if I recently had Covid?
Is the booster Omicron-specific?
What about boosters for my kids?

Our doctors are here to answer your vaccine questions.

I can help. Let’s talk.

Our VaxFacts+ Clinic will connect you with qualified doctors who understand that you may have questions or are looking for more information about COVID-19 vaccines. They are ready to talk, listen and help you get the facts.

Schedule a one-to-one phone conversation.
BOOK ONLINE
shn.ca/VaxFacts

Questions about your health?
Speak with an expert physician!

Our trusted doctors are here to listen and answer your questions about:

- **VACCINES**
 Including COVID-19, RSV, flu, immunizations

- **CANCER SCREENING**
 For colon, breast and cervical

- **PREVENTATIVE HEALTH COUNSELLING**
 For topics such as infectious diseases, health risk factors, and community resources

Schedule a one-to-one phone conversation.
BOOK ONLINE:
shn.ca/VaxFacts
Live - stream days on January 26 & 27, 2024

- Learn and earn credits through a dynamic, virtual experience
- Hear from thought-provoking speakers
- Connect and network with your community
- Save with early bird pricing

Learn more about keynotes and register today: http://www.ocfpsummit.ca

Contact us at fms@ocfp.on.ca
Questions?

Webinar recording and curated Q&A will be posted soon
https://www.dfcm.utoronto.ca/covid-19-community-practice/past-sessions

Our next Community of Practice: October 27, 2023

Contact us: ocfpcme@ocfp.on.ca

Visit: https://www.ontariofamilyphysicians.ca/tools-resources/covid-19-resources

The COVID-19 Community of Practice for Ontario Family Physicians is a one-credit-per-hour Group Learning program that has been certified for up to a total of 32 credits.

Post session survey will be emailed to you. Mainpro+ credits will be entered for you with the information you provided during registration.